How to Build Better Homes for Less Money

Applying Lessons from NASA and Major League Baseball

Presented by: Cy Kilbourn

Audience Survey

- Raters
- Providers
- Builders
- Efficiency Program
 Personnel
- Utility Personnel
- Others?

What makes a "Better Home"?

What makes a "Better Home"?

Comfort

Low Cost of Ownership

Energy Efficiency Low Environmental Impact

The Real Benefits of Features

Features

- 16+ SEER Air Conditioner
- High R Envelope
- R60 Attic Insulation
- Low blower-door results
- Heat Recovery Ventilator

The Real Benefits of Features

Features

- 16 SEER Air Conditioner
- High R Envelope
- R60 Attic Insulation
- Quality Air Sealing
- Heat Recovery Ventilator

<u>Benefits</u>

- Low Cost of Ownership
- Comfortable Living
- Low Environmental Impact
- Resale Value

How to Build a Better Home

Audience Poll:

"Raise your hand if you think building a better home means spending more money."

How to Build a Better Home: The Typical Path

Better Home = More Expensive Home

How to Build a Better Home: The Typical Path

Better Home = More Expensive Home

Let's talk baseball...

The Problem:

Build a better team with less money than the competition (~1/3 of the max league salary total).

The Problem:

Build a better team with less money than the competition (~1/3 of the max league salary total).

The Solution?

The Problem:

Build a better team with less money than the competition (~1/3 of the max league salary total).

The Solution?

The Problem:

Build a better team with less money than the competition (~1/3 of the max league salary total).

The Solution?

Moneyball - "Sabermetrics". Using superior analysis to put undervalued players together to form a better performing team.

The Moneyball Solution

THE BOOK

THE MOVIE

"Your goal shouldn't be to buy players, your goal should be to buy wins."

Billy Beane, GM Oakland Athletics

How it works

1. Determine success metrics and constraints

Maximize wins at lowest salary

2. Predict performance based on available information

$$Runs\ Created = TB \ * \ \frac{H + BB}{AB + BB}$$

3. Run a system optimization

2015 MLB Wins vs Payroll

2015 MLB Wins vs Payroll

2015 MLB Wins vs Payroll

The Moneyball Solution

Applied to Homebuilding...

It's all about the give and take: System, not components

Examples of Systems Approach in other Industries...

- Computer chip design
- Robotics
- Structural engineering
- Rocket science

What is Rocket Science?

Goal:
 – Successful mission

- Parameters:
 - Weight
 - Size
 - -Fuel supply
 - Comm systems
 - -Life support
 - Route
 - -MANY more

What is Rocket Science?

Literally BILLIONS of possible designs

How can we choose the design with the highest probability of success?

How can we make the best decision?

1. Determine success metrics and constraints

Low risk, low weight

2. Predict performance based on available information

3. Run a system optimization

What is Rocket Science?

How can we make the best decisions?

Determine evaluation criteria and simulate all your options.

Rocket Science --> Home Building

Rocket Science --> Home Building

Options for Wall Systems

- 2x4 or 2x6 (or more!)
- Advanced Framing
- 16" O.C. or 24" O.C.
- Fiberglass or Foam?
- R11, R13, R15, R19, R21...
- Exterior Continuous Insulation

Options for HVAC

- Furnace/AC or Heat Pump
- 14 SEER or 16 SEER
- 80, 92, or 96 AFUE
- Natural Gas, Propane, Electric?
- Single Speed or Variable?
- Proper sizing

Image from www.mcair.com

Options for Water Heating

- Tankless, 50G, 80G
 EF (Energy Factor)
- Natural Gas or Electric
 Condensing?

Claims from Manufacturers

\$365 Energy Savings per Year.*

20-30 percent less energy

save more than \$350 million each year

What do they mean? Who do you trust?

SAVE \$600

Other Parameters

Goals:

- ENERGY STAR
- HERS Scores
- EFL
- LEED
- NGBS
- Focus on Energy

Codes:

- IECC
 - Current Code
 - Future Code
- Local amendments
- Many compliance paths

Incentives:

- Rebates
- Tax Credits
- Loans
- RECs

national**grid**

Re-use the same pattern!

1. Determine success metrics and constraints

High performance, low cost

2. Predict performance based on available information

HERS Rating Tools, builder cost estimates

3. Run a system optimization

How Building Design Process Works Today

How Building Design Process Works Today

2015 MLB Wins vs Payroll

Does this really make a difference?

Real Scenarios

Survey Question

In a 5,000 ft² house in Indianapolis, how much does using R15 walls instead of R13 save a homeowner per month?

- A. More than \$50
- B. \$25 \$50
- C. \$10 \$25
- D. \$5-10
- E. Less than \$5

Wall Insulation Diminishing Returns

\$ Lost Through Wall per Month

Real Scenario #1

Real Scenario #1

Real Scenario #2

Real Scenario #2

Real Scenario #3

Real Scenario #3

A Real Example – Project in New Mexico

Phase 1 - Maximum HERS vs. Cost (Forced Air Options)

*7 base plans; ~80 homes

A Real Example – Project in New Mexico

10 Builder Case Study

- Data collected from projects with 10 production builders.
- Purpose: to evaluate average per home savings potential for residential production-build companies when using Ekotrope's energy spec optimization method.

10 Builder Case Study – Results

\$15,000

\$10,00

\$5,000

\$0·

Large Builders

(500+homes/yr)

Figure 2 – Savings on every per-home for 10 builders in the study. Energy price escalation is included in the 30 year savings calculations as estimated by the U.S. Energy Information Administration.

Mid-size Builders

(200-500 homes/yr)

\$27,820

Small Builders

(25-200 homes/yr)

10 Builder Case Study – Results

- Construction cost savings range: \$400 \$6,680 per home
 - Results in an average profit margin increase of 13%
- Energy savings range: 5% 25%
 - Average 30 year energy bill savings: \$9,100 per home

Key assumptions:

- 2% annual electric price escalation
- 2.5% annual natural gas price escalation

Parting Question

Are we making optimal design decisions?

Thank you!

Cy Kilbourn

Co-Founder, Director of Engineering

cy@ekotrope.com 617-453-8043